
ALL-TIMES Final Publishable Summary Report

PROJECT FINAL REPORT

Publishable Summary Report

Version 0.1, 2010-06-15 (Lisper, MDH)
Version 1.0, 2010-09-08 (Lisper, MDH)

Grant Agreement number: 215068

Project acronym: ALL-TIMES

Project title: Integrating European Timing Analysis Technology

Funding scheme: small or medium-scale focused research project

Period covered: from Dec. 1, 2007 to May 31, 2010

Name of the scientific representative of the project’s co-ordinator, Title and
Organisation::
Björn Lisper, Professor, Mälardalen University

Tel: +46-21-151709

Fax: +46-21-101460

E-mail: bjorn.lisper@mdh.se

Project website address: www.all-times.org

1

http://www.all-times.org

ALL-TIMES Final Publishable Summary Report

Contents

1 Introduction 3

2 Objectives 4

3 Partners 4

4 Project Activities, and Work Plan 5
4.1 Work Package 1: Requirements . 7
4.2 Work Package 2: System-level Integration 7
4.3 Work Package 3: Code-level Integration 9
4.4 Work Package 4: Validation and Dissemination 10

4.4.1 Validation . 10
4.4.2 Dissemination . 10

5 Main Project Results 12
5.1 Tools . 13
5.2 Tool Connections . 14
5.3 Interface Formats . 15
5.4 Methodology . 16
5.5 Validation . 17

5.5.1 Experiences, and Lessons Learned 17

6 Potential Impact and Use 18

7 Conclusions 19

8 Contact Info 20

2

ALL-TIMES Final Publishable Summary Report

Figure 1: The electronics in a modern car.

1 Introduction

Embedded computer systems are omnipresent in modern life. Cars, telephones, wash-
ing machines, airplanes, and other products all contain embedded systems that monitor
and control their functionality. A modern car can easily contain 40-60 processors that
control different parts: ignition, fuel injection, powertrain, brakes, suspension, as well as
entertainment and positioning systems, and lately advanced features like active collision
avoidance systems and automatic parking assistance. See Fig. 11.

Obviously, it is very important that these embedded systems are reliable and always
work as intended. A desktop computer crash can perhaps be annoying, but a failing em-
bedded system can have fatal consequences. Many embedded systems are safety-critical,
and if they fail then human lives can be at risk.

Another aspect is that an increasing share of the value for hi-tech products, such as cars,
comes from the embedded systems. Time-to-market is becoming increasingly important.
At the same time, the embedded systems are becoming more complex. For industry to
stay competitive, development costs have to be curbed. Altogether, this implies that there
is a need for improved methods and tools for embedded systems development, making it
faster and more efficient, and where the resulting functionality is ensured.

For most safety-critical embedded systems, correct timing is an important part of the
required functionality. Again, a car provides good examples: for instance, an ABS braking
system must be able to react within a certain time to signals indicating that the tires are
losing their grip. If the timing of the ignition is off then the car will run poorly, or not

1Picture by photobucket.com

3

http://www.photobucket.com

ALL-TIMES Final Publishable Summary Report

at all. Obviously, the process of designing embedded systems to meet the required timing
requirements, and to analyse the resulting systems to decide whether the requirements
are met, needs ample support by methods and tools as well.

This is where ALL-TIMES comes in. Timing analysis has been the subject of academic
study for a number of years, and some commercial tools have emerged. However, the
tools have operated mostly in isolation, thus limiting their applicability and not utilizing
their full potential. The objective of ALL-TIMES has been to create integrated tool
chains, enabling different timing analysis tools to work together in a highly automated
fashion. The project has also developed methodologies supporting the proper use of these
tool chains in different situations. The tool chains have been enabled by the creation of
open interface formats carrying different kinds of information, and enabling different tool
connections. In one part of the project methods and tools for early timing estimation
have been developed, which can direct the design work to provide a timing-correct system
in shorter time. Altogether, the aim of ALL-TIMES has been to cut the design time
for embedded systems, and provide more reliable embedded systems, by providing the
appropriate tool support for timing analysis.

2 Objectives

The two principal project objectives for ALL-TIMES have been the following:

• O1: Integration of timing analysis tools, and

• O2: Increase of productivity of embedded systems development projects by 25% of
the design time pertaining to timing issues.

These objectives have been refined into seven more technical project goals, which con-
tribute to the project objectives according to the following table:

Goal Description O1 O2
g1 Enable source-code/binary code analysis integration High -
g2 Reduce number of manual annotations - High
g3 Minimise interference by instrumentation - High
g4 Open tool integration High -
g5 Improve accuracy of system-level timing verification Low High
g6 Enable timing estimation early in the design Low High
g7 Demonstrate results in industrial context Low High

3 Partners

ALL-TIMES has six partners: two academic partners, and four tool vendors:

Mälardalen University (SWE): coordinator, academic institution. It has developed the
Worst-Case Execution Time (WCET) analysis tool SWEET, which is an academic pro-
totype.

Vienna University of Technology (AUT): academic institution. It has developed the
academic prototype tool SATIrE for source-level program analysis and transformation.

4

ALL-TIMES Final Publishable Summary Report

WP3

WP4

WP2

WP1

Figure 2: The technical work packages of ALL-TIMES.

AbsInt Angewandte Informatik GmbH (GER): tool vendor. AbsInt produces tools
mainly for code-level analysis, including the WCET analysis tool aiT.

Gliwa GmbH (GER): tool vendor. Gliwa produces the tool T1 for measuring, visualising
and analysing the timing of embedded software.

Symtavision GmbH (GER): tool vendor. The main product of Symtavision is the
system-level timing analysis tool SymTA/S.

Rapita Systems Ltd (GBR): tool vendor. Rapita Systems provides the tool RapiTime,
for WCET analysis, and performance debugging.

4 Project Activities, and Work Plan

The technical work in ALL-TIMES has been organized in four different work packages:
WP1 Requirements, WP2 System-level integration, WP3 Code-level integration, and WP4
Validation and dissemination. Fig. 2 illustrates the dependencies between these work
packages: a dashed double-pointed arrow indicates a mutual dependency for work packages
that overlap in time. A fifth work package WP5 Project management concerned the
project administration.

The Gantt chart of the work packages in Fig. 3 shows the timeline of the project,
including the three reporting periods. (The project was extended with three months:
therefore, the last period spans twelve months rather than nine.) The breakdown of work
packages into work tasks, with timelines for these, is shown in Table 1. The work carried
out in the technical work packages is described in Sections 4.1 - 4.4 below. The total effort
(man months) spent by the partners on the different work packages is shown in Table 2.

5

ALL-TIMES Final Publishable Summary Report

M1 M9 M30

WP1

WP3

WP2

WP4

WP5

M18

Figure 3: Gantt chart of work packages.

WP1: Requirements
WT 1.1 Identification of use cases (M1 - M6)
WT 1.2 Timing analysis tool requirements (M3 - M9)
WT 1.3 Tool interface requirements (M3 - M9)

WP2: System-level integration
WT 2.1 System-level tool interfaces (M10 - M30)
WT 2.2 Early-stage system-level methodology (M10 - M30)
WT 2.3 Late-stage system-level methodology (M10 - M30)

WP3: Code-level integration
WT 3.1 Incorporating tool measurement data (M10 - M30)
WT 3.2 Source-level analyses (M10 - M30)
WT 3.3 Code timing analysis in early design stages (M10 - M30)

WP4: Validation and Dissemination
WT 4.1 Case study plan (M1 - M6)
WT 4.2 Validation using case studies (M7 - M30)
WT 4.3 Plan for the use and dissemination of foreground (M1 - M6)
WT 4.4 Dissemination (M7 - M30)

WP5: Project management
WT 5.1 Project management (M1 - M30)

Table 1: The different worktasks.

6

ALL-TIMES Final Publishable Summary Report

Mälard. AbsInt Vienna Gliwa Symtav. Rapita total
WP1 9.6 14 10 4.1 9.15 14.5 61.35
WP2 1.5 3 0 10 28.37 10 52.87
WP3 33.7 14.9 23.6 6.5 0.5 22 101.2
WP4 15.1 8.9 11.46 6.44 13.65 12.89 68.44
WP5 6.4 0 0.75 0.75 1.38 0.52 9.8
total 66.3 40.8 45.81 27.79 53.05 59.91 293.66

Table 2: Efforts spent in the project (man months).

4.1 Work Package 1: Requirements

The work in this work package has concerned the following three aspects. First, a number
of interesting so-called “use cases” (tool couplings) were identified. The purpose of these
use cases is to enable the formation of tool chains, where different timing analysis tools
interact to make the timing analysis process more efficient. 20 potential use cases were
identified at an early stage of the project. Of these, 16 were finally implemented. They
are shown in Fig. 4.

Second, an analysis was made what kind of development of the timing analysis tools
that would be required to support the selected use cases. The third part of the work was
to similarly identify the requirements on the tool interfaces to support the use cases. This
part of the work formed the basis for the continued work in work packages 2 and 3.

4.2 Work Package 2: System-level Integration

System-level timing analysis takes the complete system into account. The analysed system
consists of a single processor, or several processors and communication buses. Each pro-
cessor hosts a number of activities (so-called tasks), which together carry out the duties of
the system. The analysis obtains timing bounds for the tasks from the code-level analysis,
and subsequently determines the schedulability given requirements on the response times
of the system. If the system is schedulable, then its timing requirements are met. The
single system-level analysis tool in ALL-TIMES is SymTA/S from Symtavision.

A key factor in the system-level analysis is what information to pass from the code-
level analysis tools, and how to pass it. For this purpose, two open interface formats
were specified and implemented: XTC 2.0 (“eXtensible Timing Cookies”), for passing
information like WCET bounds on tasks, and ATF for communicating traces. These
interfaces carry five of the use cases identified in work package 1, between the code-level
analysis tools aiT, T1, RapiTime, and the system-level tool SymTA/S.

Visualisation is a useful tool to help the engineer understand the system-level timing
behaviour. For that purpose, requirements for a Common Trace Viewer were specified.
These requirements specify what a tool for visualising trace data must be able to do.
Two Common Trace Viewer prototype implementations have been made in the project.
A screenshot of the Symtavision trace viewer is shown in Fig 5.

An important part of the work has been the development of methodologies for using the
tool combinations enabled by the new tool connections. The methodologies developed in
the project cover several design situations. This includes both early design phases, where
estimations of time consumption are made to direct the system design, and late verification

7

ALL-TIMES Final Publishable Summary Report

aiT/TimingExplorer
(AbsInt)

T1
(Gliwa GmbH)

SymTA/S
(Symtavision)

SWEET
(MDH)

RapiTime
(Rapita Systems)

SATIrE
(TU Vienna)

 H. Activation events

I. Code execution time

D. Code execution time

J. Analysis
data

F. Measurements

P. Automated
annotation generation

T. Flow facts & flow hypothesis

M. Code execution time

N. Activation events

E. Mutually exclusive
execution paths

A. Combination
of analysis and
measurement

S. Flow
facts

C. Executable
reader

R. Sharing of
analysis results

O. Automated
annotation generation

Q. Provision
of frontend

Figure 4: The use cases finally implemented in ALL-TIMES.

Figure 5: A trace viewer screenshot.

8

ALL-TIMES Final Publishable Summary Report

where the timing properties of the final system are verified. The final methodologies are
integrated, and cover both the code-level and system-level parts of the integrated tool
chains.

4.3 Work Package 3: Code-level Integration

Code-level analysis derives bounds on the execution time (typically WCET) for single
tasks. In contrast to system-level analysis, which mainly deals with numbers representing
timing bounds, code-level analysis must analyse the program code as well as the influence
of the hardware on the timing. This makes the analysis complex. In practice, the user
often has to provide information manually that the tools are not able to derive automat-
ically. To reduce the need for such manual intervention has been an explicit goal of the
work in ALL-TIMES, and this problem has been tackled in different ways in this work
package.

Code-level analysis can be done by a variety of techniques, ranging from timing esti-
mations based on various measurements to pure static program analysis. It can be done
both for executables and source code. Different approaches have different pros and cons.
All the main code-level analysis techniques are represented in ALL-TIMES by different
tools.

In order to enable the best combination of analysis techniques for different design situ-
ations, a number of connections have been realized between the code-level analysis tools.
One group of connections effectuates the communication of measured data, and involves
the tools T1, aiT, and RapiTime. The data can be measured times for program fragments
as well as information on program flow, like the observed maximal number of iterations of
a loop. These connections use the XTC or ATF interface formats. Measurement of data
yields a high level of automation, but the accuracy of the results depends on the quality
of the test data.

Another part of the work has been the development of supporting source-level analyses.
Information about program flow, like the maximal number of loop iterations, or possible
values of function pointers, is typically easier to find from the source code than from the
executable. A static analysis of the source code gives high confidence in the results. The
tools SATIrE and SWEET are able to do source-level analysis: SATIrE analyses the source
code directly, while SWEET uses its multilevel code interface ALF. An ALF translator
from SATIrE has been developed, enabling SATIrE to act as a frontend for SWEET. In
addition, the “ARAL” interface has been defined and implemented: it enables the tools
to exchange program analysis information. Both tools have furthermore been equipped
with interfaces to export their analysis results to aiT and RapiTime, which both can
use the information when calculating WCET bounds. The benefits are a higher level of
automation, and/or better precision in the resulting WCET bounds.

The third part of this work package concerns code-level timing analysis in early design
stages. This is useful for design space exploration, typically in situations where a migration
to more recent hardware is desired. The analysis can then be used to direct the selection
of hardware. For this purpose, the TimingExplorer tool has been developed. This is
a version of aiT that trades precision for speed in order to allow a fast design space
exploration with different hypothetical hardware configurations. TimingExplorer has the
same interfaces as aiT, and can thus directly replace aiT in the tool chains. In particular,
it can use information both from measurements and source-level analyses through the
interfaces developed in the project.

9

ALL-TIMES Final Publishable Summary Report

Figure 6: Active Front Steering (AFS).

4.4 Work Package 4: Validation and Dissemination

4.4.1 Validation

The results of the project have been validated using two case studies. Both case studies
come from the automotive domain. The first case study concerns the “VECU” (vehicle
control unit) in an experimental fuel-cell-powered system. This unit calculates the torque
necessary to fulfil the driver’s request in the current situation, as well as handling the
buffer battery in the system. The second case study is an active front steering system
(“AFS”), which changes the steering ratio gradually according to the vehicle speed and
also implements a number of stability-enhancing functions. See Fig. 6.

VECU was used as the main case study, complemented by AFS. Validation was done
both on an individual basis, per use case, and for full tool chains. In both cases the
reduction in design effort, resulting from the improved workflows made possible by the
project results, was estimated.

The tool chain validation was done using two scenarios: an “early stage” scenario,
assuming a situation where a processor upgrade is to be done, and a “late stage” scenario
where the schedulability of an existing system is to be decided. For each scenario a typical
workflow was considered, and the reduction in effort for each step in the workflow was
estimated. The result of this was an estimate of the overall reduction in design effort for
each selected scenario. The tool chains for the early and late stage scenarios are shown
in Figures 7 and 8, respectively.

4.4.2 Dissemination

The dissemination of the project results has taken place through a number of channels.
One journal publication, 18 papers in reviewed scientific conferences and workshops, 14
papers in branch magazines, user conferences, and similar, and 22 other publications
have resulted from the work in the project. The project has been represented at nine
conferences or trade shows with posters, demos, or similar. A number of press releases,
flyers, and other advertising material has been produced. ALL-TIMES partners AbsInt,
Gliwa, and Symtavision have formed the Real-Time Experts Alliance2 for joint promotion

2www.real-time-experts.com

10

http://www.real-time-experts.com/index_en.htm

ALL-TIMES Final Publishable Summary Report

Source-Level
Analysis

Code-Level
Analysis

System
Analysis

TimingExplorer
(ABS)

T1
(GLI)

SymTA/S
(SYM)

SWEET
(MDH)

SATIrE
(TUV)

RapiTime
(RPT)

Traceanalyzer
(GLI/SYM)

Figure 7: Early stage validation scenario.

Source-Level
Analysis

Code-Level
Analysis

System
Analysis

aiT
(ABS)

T1
(GLI)

SymTA/S
(SYM)

SWEET
(MDH)

SATIrE
(TUV)

RapiTime
(RPT)

Traceanalyser
(GLI/SYM)

Figure 8: Late stage validation scenario.

11

ALL-TIMES Final Publishable Summary Report

Figure 9: Tools, analysis techniques, tool connections, formats.

and marketing of project results. Project partners have arranged four scientific workshops
related to the project. ALL-TIMES has interacted with the European projects TIMMO,
MERASA, and INTERESTED, and project results will be further disseminated through
collaborations in future projects: project partners are currently involved in the proposed
European projects TIMMO-2-USE (ITEA2), ReComp (ITEA2, already running), and
SafeCer (ARTEMIS).

The project website, www.all-times.org, hosts general information about the project,
public documents, and open interface specifications.

5 Main Project Results

The main project results of ALL-TIMES are new and improved tools, tool connections,
open interface formats, and methodologies helping the user use the tool chains enabled by
the results brought by the project. Fig. 9 illustrates the tools and tool connections, and
the different formats and analysis techniques that have been developed and knit together
in the project.

12

http://www.all-times.org

ALL-TIMES Final Publishable Summary Report

5.1 Tools

Existing tools have been enhanced and extended in the project, and a number of tool
connections have been established. The following tools have been created, or enhanced,
in the project:

SymTA/S has been extended with support for the new XTC 2.0 format, and for the ATF
format for exchanging trace information. It has been further extended with a Distribution-
Analysis prototype, in order to capture both worst-case schedules as well as typical cases,
their distribution and the probability of worst cases.

Common Trace Viewers Symtavision and Gliwa have developed a prototype tool based
on the ALL-TIMES agreed trace viewer requirements. They have also added support for
multicore ECUs.

T1 Gliwa has extended their T1 to support ATF and XTC 2.0. The measurement
resolution has been improved to the granularity of machine instructions. An on-target
timing analysis component has been developed which allows to determine loop bounds
and call targets of indirect function calls. Additionally, the on-target analysis captures
max/min core execution times and the max/min CPU load.

TimingExplorer The TimingExplorer tool has been developed within the project. It is a
version of aiT for static WCET analysis, which is tuned to suit design space exploration in
early design phases. Therefore it trades precision for analysis speed, which is more impor-
tant in design space exploration. TimingExplorer is fully compatible with aiT as regards
interfaces, and both TimingExplorer and aiT have been provided with new interfaces for
the XTC 2.0 format.

SWEET A new version of SWEET has been implemented, which uses the new multilevel
code format ALF as input format for its program flow analysis. It can now generate a
number of new program flow constraints, and it has been enhanced with a new format
for input value annotations to allow a more precise analysis. Its Flow Fact format for
representing program flow constraints has been extended to be more expressive. SWEET
has also been extended with backends that generate flow facts in the ARAL, AIS3, and
RapiTime annotation formats.

SATIrE is a source program analysis/transformation tool built on top of the Rose com-
piler framework. It has been extended in various ways to support source level analysis,
including advanced analyses to compute function pointer information, and a flow-sensitive
interval analysis. A tool for translating Rose’s internal format into ALF has been imple-
mented: together with Rose’s C frontend this provides a C frontend for SWEET. SATIrE
has also been extended to export function pointer sets to the AIS and RapiTime annota-
tion formats.

3AIS is the annotation format for aiT/TimingExplorer.

13

ALL-TIMES Final Publishable Summary Report

RapiTime has been extended with new interfaces for the XTC 2.0 and ATF formats.
RapiTime can now also export ATF directly. The ATF support in RapiTime has enhanced
RapiTime ”Rewind” v2.3, allowing it to relate wall-clock times to events in the trace.
RapiTime’s annotation format has been extended to use the Abstract Source Location
(ASL) format to specify program locations, and an ARAL reader for importing results
from SATIrE.

5.2 Tool Connections

The following tool connections (use cases) have been effectuated through the implementa-
tion of the various interfaces and tool enhancements done in the project. See also Fig. 4:

A. Combination of analysis and measurement (aiT↔ T1) T1 can export measurement-
based timing information, and loop iteration bounds, to aiT through the XTC 2.0 format.
The connection also enables comparisons between measured end-to-end execution times
from T1, and estimates done by the static analysis of aiT.

C. Executable reader (aiT → SWEET) A translator for binaries, stored in aiT’s
internal representation, into ALF has been implemented for the NEC V850 and PowerPC
instruction sets. This connection enables SWEET to perform program flow analysis on
binaries, using aiT as a “frontend”.

D. Code execution time (aiT → SymTA/S) Through XTC 2.0, aiT exports WCET
estimates for uninterrupted tasks to SymTA/S. This connection existed in earlier versions
of XTC, and has been maintained into XTC 2.0.

E. Mutually exclusive execution paths (T1 → aiT) T1 can export information about
unreached program points, and function-pointer destinations, to aiT. The format is XTC 2.0.

F. Measurement input (T1 → RapiTime) Traces are exported from T1 to RapiTime
through the ATF common trace format. RapiTime can then perform a WCET analy-
sis using the traces, and generate a detailed WCET report that can be viewed in the
RapiTime report viewer.

H. Activation events (T1 → SymTA/S) Traces containing activation events are ex-
ported from T1 to SymTA/S using ATF. SymTA/S can then perform a schedulability
analysis based on this information, and the trace viewer of SymTA/S can visualize the
trace data.

I. Code execution time (T1 → SymTA/S) Execution time bounds extracted from
traces are exported from T1 to SymTA/S through the XTC 2.0 format.

J. Analysis data (RapiTime → T1) This use case allows the export of traces from
RapiTime to T1 using ATF. It allows T1 users to reuse the RapiTime instrumentation.

M. Code execution time (RapiTime → SymTA/S) RapiTime exports WCET esti-
mates to SymTA/S, using the XTC 2.0 format.

14

ALL-TIMES Final Publishable Summary Report

N. Activation events (RapiTime → SymTA/S) RapiTime provides traces containing
runtime events such as scheduler events, task/thread activation events, etc., using ATF.
SymTA/S imports the trace data to show its visual representation.

O. Automated annotation generation (SATIrE → aiT) SATIrE exports function
pointer sets to aiT/TimingExplorer using the AIS annotation format. This reduces the
need for manual annotations.

P. Automated annotation generation (SATIrE → RapiTime) Similarly to use case
O, SATIrE exports function pointer sets to RapiTime using RapiTime’s annotation format
and ASL (abstract source code locations).

Q. Provision of frontend (SATIrE → SWEET) Through a translator from Rose’s
internal format to SWEET, SATIrE can act as a C frontend to SWEET. This enables
SWEET to perform source-level program flow analysis.

R. Sharing of analysis results (SATIrE ↔ SWEET) The ARAL format has been
designed to exchange program analysis information. API’s have been created that can be
used to read and write analysis results in ARAL. These API’s are used by SWEET and
SATIrE to export program analysis results.

S. Flow facts (SWEET → aiT) “Flow facts” (program flow constraints) automati-
cally generated by SWEET are exported to aiT/TimingExplorer in the AIS format. The
provision of these can reduce the need for manual annotations.

T. Flow facts & flow hypotheses (SWEET ↔ RapiTime) Similarly to use case S,
SWEET can also export flow facts to RapiTime in the RapiTime format using ASL to
specify program locations. An experimental version of SWEET that can read traces and
generate flow facts from these (so-called “flow hypotheses”) has also been implemented.

5.3 Interface Formats

The following open interface formats have been developed within the project. The formats
are open, and can be freely used also by other tools than the ones in ALL-TIMES.
Specifications for these formats are available at www.all-times.org.

XTC 2.0 XTC stands for “eXtensible Timing Cookies”, and is an XML-based format
used to exchange different kinds of timing analysis data. XTC supports a request/reply
style of communication, where different tools successively add information to the cookie.
XTC 2.0 can transfer information about worst-case execution times, maximum stack
usage, iteration bounds of loops, response times, activation patterns aligned with the up-
coming AUTOSAR 4.0 and TIMMO event model descriptions, and scheduling overheads.

ATF This is an XML-based trace format. It allows the exchange of trace information,
including metadata. Similarly to XTC, it has a “cookie” function allowing different tools
to add information.

15

http://www.all-times.org

ALL-TIMES Final Publishable Summary Report

ALF ALF is a program code format. It is designed to be easy to analyze, as well as to
be able to faithfully represent code on different levels, ranging from source level to binary
level. Therefore it includes both high-level constructs, such as function calls, as well as
low-level constructs such as jumps with computed targets.

ARAL This is a format to exchange program flow analysis information, which has been
developed within ALL-TIMES. It allows to express contexts such as call strings, and it
has a language for expressing analysis results.

ASL ASL is a format to express locations in source code. This information is needed to
express source code analysis results.

5.4 Methodology

The ALL-TIMES methodology helps the user choose the best combination of timing
analysis tools and techniques for a given situation. It covers both early exploration and
late verification, as well as code level and system level analysis.

Figure 10: The four quadrants of the ALL-TIMES methodology and their relationships

Figure 10 summarizes the four aspects of the ALL-TIMES methodology and their re-
lationships. As development progresses, early phase models for design space exploration
are refined into late phase models for timing verification. In the opposite direction, late
phase models of a system are reused as the basis for early phase models of new versions
of the system. In the early phase, system-level models are used to derive budgets for
code-level timing. In the opposite direction, code-level analysis provides timing estimates
for consideration on the system level: for instance, the timing estimates can be checked
against the timing budgets. In the late phase, system-level models are used to specify
constraints for code-level timing. In the opposite direction, code-level analysis provides
timing properties for consideration on the system level. An example is a system-level
schedulability analysis based on WCET bounds obtained from code-level analysis.

The methodology specifies a number of workflows in different situations. An example
is shown in Fig. 11, which specifies a workflow for early stage code-level analysis using
source-level analysis. These workflows involve different tool chains, like SATIrE – SWEET

16

ALL-TIMES Final Publishable Summary Report

Figure 11: Workflow for source-code analysis and static timing analysis.

– TimingExplorer in the example, and the methodoloqy explains how to use the different
tools and exchange formats in the different situations.

5.5 Validation

The goal of the validation was to decide whether the project had met its main objectives
O1 (integration of timing analysis tools), and O2 (increase of productivity of embedded
systems development projects by 25% of the design time pertaining to timing issues). O1
was validated on a per use case basis, where a use case (tool integration) was considered
validated when used for at least one case study. 13 out of the finally implemented 16 use
cases were O1 validated.

As explained in Section 4.4.1 the O2 validation was done for two different design sce-
narios involving two tool chains, an early stage design exploration scenario and a late
stage verification scenario. For each scenario, the overall reduction in effort brought by
the ALL-TIMES technologies was estimated. For the early stage scenario the estimation
indicates a ten-fold reduction in effort, and for the late stage scenario a reduction by
factor of two. Taking into account that the scenarios cover only the timing analysis part
and not the full design effort pertaining to timing, these estimates still provide strong
evidence that O2 is met.

5.5.1 Experiences, and Lessons Learned

The validation provided valuable experience regarding the use of the integrated tool
chains, and the parts that are likely to contribute the most to the improvement of the tim-
ing analysis process. For both validation scenarios, the main improvement comes from the
automated generation of program flow annotations. In particular the automatic derivation
of program flow information from traces turned out to be very successful. High speedups
were also recorded for the automation of information exchange through the XTC and ATF
formats, which enables a much faster interaction between code- and system-level analysis
tools. This information exchange also yields new opportunities to visualise different kinds
of timing information.

17

ALL-TIMES Final Publishable Summary Report

The source-level analysis validation encountered some problems, mainly pertaining to
source code missing for some parts of the system, and inability to parse parts of the
source code due to the code stretching the C standard. It also turned out that detailed
knowledge of the build process was necessary to guide the source analysis to the proper
parts of the source code. These issues seem to be common for “deep”, semantics-based
source-level analysis in general. If industry wants to take full advantage of source-level
analysis then care has to be taken regarding coding standards, and source code will have
to be provided by third-party software providers to a larger extent. More research is also
clearly needed how to handle situations with incomplete source code.

Finally, a lesson learned was the importance of making sure early that the selected case
studies really will support the validation of all the techniques and tool developed in the
project. ALL-TIMES initially aimed to have three case studies. This was narrowed down
to two case studies, AFS and VECU, since only these case studies contained source code.
Quite late into the project it was discovered that the AFS source code had been stripped
of almost all the interesting contents due to IP reasons, and therefore was unsuitable
for validating the source level analyses. This left the project with only the VECU case
study being possible to use throughout the project, with AFS restricted to the parts that
would not involve source-level analysis. If this had been found earlier, the consortium
would have had more time to look for alternative case studies giving better support for
the validation of the source-level analyses.

6 Potential Impact and Use

The commercial partners all plan to integrate the ALL-TIMES results into their next
generation of products. More specifically all these partners plan to integrate the interface
support, developed within ALL-TIMES, into their commercially offered tools. This par-
ticularly applies to the XTC and ATF interfaces, which support a large number of use
cases. Rapita Systems will also incorporate the ASL notation into their next line of prod-
ucts: this will effectively port the integration with the source-level tools to the commercial
version of RapiTime. Symtavision will develop its Common Trace Viewer into a product,
the Symtavision TraceAnalyzer. AbsInt will evaluate TimingExplorer with a selected set
of customers, and if the outcome is positive then a series of commercial TimingExplorers,
for different processor families, will be made available. This then means that basically
all the improvements brought in the project by the commercial partners will be available
quite soon to end-users, and that they will benefit from the expected productivity in-
crease resulting from their use. For instance, the early stage validation scenario (Fig. 7)
will then be fully supported. It is foreseen that the primary markets will be in the au-
tomotive, avionics, and train areas. The impact will be an increased competitiveness of
these sectors of the European industry, due to higher quality of the embedded software
and reduced development costs.

The academic partners, which have provided the source-level analysis tools to the
project, plan to give their tools free distribution, possibly as open source. This then
means that end-users who want to try out the source-level analysis extensions of the tool
chains, and possibly integrate these into their development processes, will be able to do
so.

The project results also provide an infrastructure for future research. The ability to
connect academic prototypes with industrial-strength tools makes it possible to perform

18

ALL-TIMES Final Publishable Summary Report

more realistic studies of different analysis methods and algorithms, where they are applied
to realistic systems rather than simple academic benchmarks. The academic partners
plan to use this infrastructure in their further research. Furthermore, future research
collaborations are facilitated by the tool connections established within ALL-TIMES.
This will be used in future research projects like TIMMO-2-USE, ReComp, and SafeCer.

7 Conclusions

ALL-TIMES has been a successful project. The benefits brought by the combined use of
tools, which has been made possible by the work carried out in the project, will be available
to end-users and will strengthen their competitiveness. Future research collaborations
between academic and commercial partners will be facilitated by the infrastructure built
in the project. Europe will continue to be in the lead as regards timing analysis.

19

ALL-TIMES Final Publishable Summary Report

8 Contact Info

• Mälardalen University (coordinator)
Contact person: Björn Lisper
Address: School of Innovation, Design, and Engineering, Mälardalen University,
P.O. Box 883, SE-721 23 Väster̊as, Sweden
Email: bjorn.lisper@mdh.se

• Vienna University of Technology
Contact person: Jens Knoop
Address: Institut für Computersprachen, Fakultät für Informatik, Technische Uni-
versität Wien, Argentinierstraße 8 / 4 / E185.1, A-1040 Wien, Austria
Email: knoop@complang.tuwien.ac.at

• AbsInt Angewandte Informatik GmbH
Contact person: Christian Ferdinand
Address: AbsInt Angewandte Informatik GmbH, Science Park 1, D-66123 Saar-
brücken, Germany
Email: ferdinand@absint.com

• Gliwa GmbH
Contact person: Peter Gliwa
Address: GLIWA GmbH embedded systems, Dollmann Str. 4, D-81541 München,
Germany
Email: peter@gliwa.com

• Symtavision GmbH
Contact person: Marek Jersak
Address: Symtavision GmbH, Frankfurter Straße 3b, D-38122 Braunschweig, Ger-
many
Email: jersak@symtavision.com

• Rapita Systems Ltd
Contact person: Nicholas Merriam
Address: Rapita Systems Ltd., IT Centre, York Science Park, York, YO10 5DG,
United Kingdom
Email: nmerriam@rapitasystems.com

Project website: www.all-times.org

20

http://www.all-times.org

	Contents
	Introduction
	Objectives
	Partners
	Project Activities, and Work Plan
	Work Package 1: Requirements
	Work Package 2: System-level Integration
	Work Package 3: Code-level Integration
	Work Package 4: Validation and Dissemination
	Validation
	Dissemination

	Main Project Results
	Tools
	Tool Connections
	Interface Formats
	Methodology
	Validation
	Experiences, and Lessons Learned

	Potential Impact and Use
	Conclusions
	Contact Info

