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1 The ALL-TIMES project

ALL-TIMES is a medium-scale focused-research project within the European Commis-
sion’s 7th Framework Programme on Research, Technological Development and Demon-
stration. It consists of six project partners from both industry and academia. Each
project partner is an expert in its particular field and is also a provider of at least one
tool for timing analysis. More details to the ALL-TIMES project in general can be found
on the website www.all-times.org.
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2 Introduction

Correct timing of real-time embedded systems is a subject with wide industrial rele-
vance. Timing analysis is vital for improving the reliability, performance, and efficiency
of embedded systems. It also helps reduce the overall system costs by validating timing
requirements, reducing the cost of development, and reducing unit costs in production.

There is a significant body of European research and experience in this area, manifested
by a number of tool providers that have commercialised academic results. Today, there is
a set of commercially available timing analysis tools, as well as prototype tools developed
in academia. However, the tools have operated mostly in isolation: this means that their
full potential to aid the embedded software development has not been utilized. There is
also a continuous need to transfer new results from academia into industrial use.

The ALL-TIMES project has addressed these issues. The project has combined major
European research and development results of timing tools to strengthen the European
lead in the area of timing measurement and analysis. It has enabled the interoperability of
tools from commercial tool providers as well as academia, and it has developed integrated
tool chains using open tool frameworks/interfaces.

3 Partners, Tools, Contact Info, and Overall Project Results

The ALL-TIMES project has taken place Dec. 1st, 2007 – May 31st, 2010. ALL-TIMES
has the following six partners, each with a specific tool:

• Mälardalen University (coordinator, academic).
Tool: SWEET, code-level timing analysis tool
Contact person: Björn Lisper
Address: School of Innovation, Design, and Engineering, Mälardalen University,
P.O. Box 883, SE-721 23 Väster̊as, Sweden
Email: bjorn.lisper@mdh.se

• Vienna University of Technology (academic).
Tool: SATIrE, general purpose code level analysis tool
Contact person: Jens Knoop
Address: Institut für Computersprachen, Fakultät für Informatik, Technische Uni-
versität Wien, Argentinierstraße 8 / 4 / E185.1, A-1040 Wien, Austria
Email: knoop@complang.tuwien.ac.at

• AbsInt Angewandte Informatik GmbH (SME).
Tool: aiT, code-level timing analysis tool
Contact person: Christian Ferdinand
Address: AbsInt Angewandte Informatik GmbH, Science Park 1, D-66123 Saar-
brücken, Germany
Email: ferdinand@absint.com

• Gliwa GmbH (SME).
Tool: T1, code/system-level timing measurement/analysis tool
Contact person: Peter Gliwa
Address: GLIWA GmbH embedded systems, Dollmann Str. 4, D-81541 München,
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Figure 1: ALL-TIMES integrations between timing analysis tools

Germany
Email: peter@gliwa.com

• Symtavision GmbH (SME).
Tool: SymTA/S, system-level timing analysis tool
Contact person: Marek Jersak
Address: Symtavision GmbH, Frankfurter Straße 3b, D-38122 Braunschweig, Ger-
many
Email: jersak@symtavision.com

• Rapita Systems Ltd (SME).
Tool: RapiTime, code-level timing analysis tool
Contact person: Nicholas Merriam
Address: Rapita Systems Ltd., IT Centre, York Science Park, York, YO10 5DG,
United Kingdom
Email: nmerriam@rapitasystems.com

Fig. 1 shows the different tools, and the different tool couplings that have been created
within the project.

The project has brought the following main technical results:

• integrated methodologies for timing analysis,

• prototypes of integrated tool chains,
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• new/improved code and timing analysis tools,

• new tool couplings (the so-called “use cases”), including open tool interfaces, and

• a validation of the integrated tool chains.

In this report we provide a summary of these results. In Section 4 we give a short intro-
duction to timing analysis. Section 5 describes the methodology that has been developed
in the project. We give an account for the development of new and improved timing
analysis tools in Section 6. In Section 7 we describe the tool couplings (use cases) that
have been implemented, and Section 8 decribes the open interface formats supporting
these couplings. Section 9 gives an account for the validation of the resulting tool chains.
In Section 10, finally, we summarize the main results of the project and draw conclusions
about their impact on the timing analysis process.

4 A Short Primer to Timing Analysis

The term “timing analysis” refers to the action of identifying, measuring, displaying, de-
scribing or forecasting the time-related behaviour of the software of a (typically embedded)
computer system. Timing analysis is a central activity when designing and developing
real-time systems. It focuses on either of the following two levels:

• Code level,

• System level.

Code-level analysis assumes an isolated view of a piece of code, whereas system-level
analysis takes the complete system into consideration.

The most important timing measures for real-time systems are

• the worst-case execution time (WCET) on the code level

• the worst-case response time (WCRT) on the system level

A variety of techniques have been developed to perform timing analysis. The most im-
portant code-level techniques include:

1. end to end measurement can be highly automated, and if the right inputs can be
identified for the worst case, measurements can derive an exact WCET. However,
triggering the inputs to generate a certain situation (worst case) can be difficult.
Thus, “end to end” measurement may underestimate the WCET.

2. static analysis, which analyses the program without actually running it. It relies
on mathematical models of the software and hardware involved. Assuming that the
models are correct, the analysis will derive a WCET estimate that is above the true
WCET. It may require manual provision of information that can be hard to derive
automatically, like upper bounds on loop iterations. Thus, it is harder to automate
completely.

3. measurement-based (or hybrid) analysis, which combines static analysis and mea-
surements, has the advantage of avoiding building hardware models, instead mea-
suring execution times for small parts of the code on the hardware itself. These
methods are also rely on adequate testing but to a lesser degree than the purely
“end to end” measurement methods.
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The most important system-level analysis techniques include:

1. end to end measurement : essentially the same approach as on the code-level. How-
ever, the focus is not on a single piece of code but instead on timing properties of
the full system.

2. scheduling analysis: Typically, WCRT’s of tasks and functions are calculated based
on the WCET’s of the different tasks of the system, the scheduling strategy, and
the activation frequency of each task. Scheduling analysis works equally well with
code execution times obtained by any of the code-level techniques, as well as with
estimated code execution times. This allows early-stage exploration and budgeting.

The tools in ALL-TIMES cover all the different timing analysis techniques listed above.

5 Methodology

This section provides a summary of the public deliverable D2.23.2 Final prototype of
integrated timing analysis methodology1.

5.1 Overview

The ALL-TIMES methodology helps the user choose the best combination of timing
analysis tools and techniques for a given situation. It covers both early exploration and
late verification, as well as code level and system level analysis.

Figure 2: The four quadrants of the ALL-TIMES methodology and their relationships

Figure 2 summarizes the four aspects of the ALL-TIMES methodology and their re-
lationships. As development progresses, early phase models are refined into late phase
models. In the opposite direction, late phase models of a predecessor are reused as the
basis for early phase models of the successor. In the early phase, system-level models are
used to derive budgets for code-level timing. In the opposite direction, code-level anal-
ysis provides timing estimates for consideration on the system level. In the late phase,
system-level models are used to specify constraints for code-level timing. In the opposite

1Available at www.all-times.org.
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direction, code-level analysis provides timing properties for consideration on the system
level.

Figure 3: Relationships of the individual ALL-TIMES tools in the ALL-TIMES method-
ology

Figure 3 shows the relationships of the individual ALL-TIMES tools in the ALL-TIMES
methodology. SymTA/S is the tool that is used for system-level analysis, both in the early
exploration and late verification phase. TimingExplorer2, RapiTime, and T1 can be used
for code-level analysis in early exploration, passing the results to SymTA/S. Similarly,
aiT, RapiTime, and T1 can be used for a more precise code-level analysis in the late
verification phase. In both phases, SATIrE and SWEET can be used to increase the
precision of timing estimates as well as improving the level of automation by performing
source-level code analyses and passing on the results to aiT/TimingExplorer or RapiTime.

Figure 3 shows how the tools fit into the different design phases. Figure 4 gives a dif-
ferent picture of the tools, and tool connections, which focusses on the possible workflows
and tool chains.

The system-level analysis methodology also includes timing analysis of networked sys-
tems, which is supported by SymTA/S. ALL-TIMES, however, only addresses single con-
troller systems.

5.2 Integrated System-Level and Code-Level Methodology

The code-level analysis tools T1, RapiTime, and aiT/TimingExplorer can all, in different
ways, estimate the WCET’s of tasks. Given these estimates, SymTA/S can perform a
schedulability analysis on system level. Important support for the methodology is pro-
vided by the automation of this information exchange through a common exchange format
called “eXtensible Timing Cookies” (XTC 2.0). The format supports an iterative workflow
between code- and system level tools, with a request/response pattern of communication.

Another important part of the methodology is tracing. By making the system traceable,
different problems can be pinpointed. When the area around the problem is identified, the

2TimingExplorer is a version of aiT adapted for early stage analysis. See Section 6.
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Figure 4: Tools, analysis techniques, tool connections, formats.
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Figure 5: Workflow for source-code analysis and static timing analysis

code can be instrumented to allow a finer inspection. The ALL-TIMES toolset provides
support for this process in various ways, including a common standard for trace viewers
with two implementations. The standard includes a common trace format, which further
facilitates the exchange of trace information between the tools.

The workflows for early exploration and late verification are similar. For late verifica-
tion, some of the code level tools are used to obtain timing estimates such as WCET, and
SymTA/S then peforms an analysis on system level using these estimates. For early design
space exploration and time budgeting, hypothetical WCET estimates for different hard-
ware configurations are generated and subsequently used by SymTA/S to verify whether
timing constraints will be met. The static analysis tool TimingExplorer is designed for
this purpose, but also RapiTime or T1 can be used if, for instance, there are simulators
available for the intended hardware platforms.

5.3 Code-Level Methodology

Code level analysis is done to estimate WCET’s, to be used by system level tools, but it
can also be used for other purposes such as identifying parts of the code with performance
problems (timing debugging). For computing WCET’s, any of T1 (end-to-end measure-
ments), RapiTime (hybrid analysis), or aiT/TimingExplorer (static analysis) can be used.
T1 and RapiTime require an instrumentation of the code to make it traceable: this is not
needed for aiT/TimingExplorer.

RapiTime and aiT/TimingExplorer estimate the WCET using program flow constraints
(loop iteration bounds, infeasible paths, function pointer sets). The tools have limited
capability to derive these constraints, so a user must sometimes provide some of these man-
ually, through annotations. The need for this can be reduced by applying a source-code
analysis that automatically derives some of the missing constraints. The tools SATIrE and
SWEET can be used for this purpose: they both compute such constraints from C source
code, and are able to export them in the annotation formats used by aiT/TimingExplorer
and RapiTime. SATIrE computes function pointer sets, and SWEET computes loop it-
eration bounds as well as a variety of infeasible path constraints. Fig. 5 shows a typical
workflow for code level analysis (static analysis, early stage, using source-code analysis).
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The workflows for late stage analysis are quite similar.
T1 can also estimate loop iteration bounds and function pointer sets from traces, and

export this information to aiT/TimingExplorer through the XTC 2.0 format. This pro-
vides an alternative to source-level analysis in situations where the source-level analysis
is hard to apply.

5.4 Tradeoffs between Automation and Confidence

The code-level tool combinations enabled by the ALL-TIMES tool connections provide
different tradeoffs between automation and confidence in the result. Which combination
to select depends on the requirements: for late stage timing verification the requirements
on confidence are usually high, in particular for safety-critical systems, whereas for early
stage design space exploration analysis time and level of automation are more important.

In general, a static analysis tool like aiT gives the highest confidence in the result, and
given enough information it can compute WCET estimates that are guaranteed not to
underestimate the actual WCET. On the other hand, a considerable amount of informa-
tion may have to be provided by the user, and analysis times can be long. Tools that
are based on hybrid methods, like RapiTime, provide somewhat less conficence since the
accuracy of the estimate now is dependent on the quality of the test vectors. On the
other hand, these methods avoid the sometimes intricate modelling of low-level hardware
timing properties. WCET analysis that is purely based on end-to-end measurements and
high-water-marking provides the lowest confidence by also the highest level of automation.

For static and hybrid WCET analysis methods, a very significant time may have to be
spent on writing manual annotations to provide program flow constraints that the tool
fails to derive automatically. ALL-TIMES has enabled new combinations of tools, where
such constraints can be derived by one tool and used by another. This can be used both
to improve the level of automation, and to increase the confidence in the result. Again,
there is a tradeoff between these objectives.

The highest level of confidence is given by a static program flow analysis of the exe-
cutable. This is done by the tool aiT, and SWEET can also do it using a translation into
ALF through use case C. But static program flow analysis on this low level of code is
hard, and the level of automation may be low.

Next level of confidence is provided by a static program flow analysis of the source
code. SATIrE and SWEET can perform source-level analysis, and pass the results to
aiT and RapiTime. This analysis is not completely safe, since the compiler might apply
optimizing transformations that alter the program flow. But usually the discrepancy is
low, and in addition optimizing transformations (like loop unrolling) tend to lower the
actual bounds, leaving the bounds derived at source level safe. Coding standards for
safety-critical systems sometimes prescribe that compiler optimizations are turned off:
this provides an increased confidence in the results of source-level program flow analysis.
The level of automation for source-level analysis is typically higher than for analysis of
executables, since there is more information in the code.

Program flow analysis based on tracing provides the lowest level of confidence. Here,
the quality of the result depends strongly on the appropriateness of the test vectors. On
the other hand, this kind of analysis can often be completely automated. T1 can do this
kind of analysis, and pass the results to aiT.

A caveat with source-level analysis is that for best results, the source code must be
available for all the significant parts of the system. This is not always the case. If some
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important parts of the source code is missing, then the analysis must make assumptions
about its properties. If these assumptions are conservative there will be high confidence
in the results, but possibly large overestimations or even failure to deliver results. Less
conservative assumptions may be unsafe, leading to possibly underestimated program flow
constraints.

6 Tools

In this section, we briefly summarize the development of new or improved tools that has
taken place within the ALL-TIMES project.

6.1 System-Level Tools

SymTA/S has been extended with support for the new XTC 2.0 format, as well as the
ATF format for exchanging trace information. These interfaces cover all the use cases
where SymTA/S is involved.

SymTA/S has been further extended with a Distribution-Analysis prototype, in order
to capture both worst-case schedules as well as typical cases, their distribution and the
probability of worst cases.

Common Trace Viewers Symtavision has developed a prototype tool ’Symtavision Trace-
Analyzer’ based on the ALL-TIMES agreed trace viewer requirements. Symtavision has
also added support for multicore ECUs.

Gliwa has extended their existing trace viewer to support the common trace format
(ATF) that has been developed within the project, as well as finer trace resolution on the
code level.

6.2 Code-Level Tools

TimingExplorer The TimingExplorer tool has been developed within the project. It is
a version of aiT for static WCET analysis, which is tuned to suit design space exploration
in early design phases. Therefore, it sacrifices absolute safety for analysis speed, making
a more approximate WCET analysis. This is useful in design space exploration, where
many different hardware configuration alternatives must be explored within reasonable
time. TimingExplorer is fully compatible with aiT as regards interfaces, and can thus be
hooked up in tool chains in exactly the same way as aiT. Both TimingExplorer and aiT
have been provided with interfaces for the XTC 2.0 format.

SWEET A new version of SWEET has been implemented, which uses ALF as input
format for its program flow analysis. SWEET is a full-fledged WCET analysis tool, but
only the program flow analysis is of concern within the ALL-TIMES project and it is this
part that has been re-implemented. It can now generate a number of new program flow
constraints. It has been enhanced with a new format for input value annotations, to allow
a more precise value-sensitive analysis. Its Flow Fact format for representing program
flow constraints has been extended to be more expressive, and to facilitate the translation
into the corresponding annotation formats used by aiT/TimingExplorer and RapiTime.
SWEET has also been extended with backends that generate flow facts in the ARAL, aiS,
and RapiTime annotation formats: these backends implement use cases R, S, and T.
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SATIrE is a source program analysis/transformation tool built on top of the Rose com-
piler framework3. It has been extended in various ways within the project to support
source level analysis. Several aspects of pointer analysis have been implemented: a post-
analysis phase for pointsTo information, extracting function-call/function-pointer spe-
cific information (fcall-points-to), an analysis for FCALL-ASL calculation (abstract fcall
source code locations), and a pointsTo data generator for ASL based connections. A flow-
sensitive interval analysis has also been implemented. The “melmac” tool for translating
Rose’s internal format into ALF has been implemented: together with Rose’s C frontend
this provides a C frontend for SWEET implementing use case Q. SATIrE has also been
extended to export function pointer sets to the aiS and RapiTime annotation formats,
thereby implementing use cases O and P.

RapiTime has been extended with new interfaces for the XTC 2.0 format, allowing easy
and error-free information exchange with other tools. RapiTime has now support for
the ATF format for exchanging trace information; ATF is so rich in information that
RapiTime can automatically construct timing reports from ATF files without requiring
source code. RapiTime can also export ATF directly. The ATF support in RapiTime
has enhanced RapiTime ”Rewind” v2.3, allowing it to relate wall-clock times to events in
the trace. RapiTime’s annotation format has been extended to use the Abstract Source
Location (ASL) format to specify program locations. This has benefits for both user
interaction and for importing annotations from SWEET. RapiTime has now an ARAL
reader. This allows RapiTime to support results from SATIrE analysis.

7 Tool Couplings (Use Cases)

The following tool couplings (use cases) have been implemented within the project. See
also Fig. 1:

A. Combination of analysis and measurement (aiT↔ T1) T1 can export measurement-
based timing information,as well as loop iteration bounds, to aiT through the XTC 2.0
format. The connection also enables comparisons between measured end-to-end execution
times from T1, and estimates done by the static analysis of aiT.

C. Executable reader (aiT → SWEET) A translator for binary formats, stored in
aiT’s internal representation, into ALF has been implemented for the NEC V850 and
PowerPC instruction sets. This connection enables SWEET to perform program flow
analysis on binaries, using aiT as a “frontend”.

D. Code execution time (aiT → SymTA/S) Through XTC 2.0, aiT exports WCET
estimates for uninterrupted tasks to SymTA/S. This connection existed already before
ALL-TIMES, through the earlier version of XTC, but has been maintained into XTC 2.0.

E. Mutually exclusive execution paths (T1 → aiT) Through this connection T1 can
export information about unreached (and therefore possibly unreachable) program points,
as well as function-pointer destinations, to aiT. The format is XTC 2.0.

3www.rosecompiler.org
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F. Measurement input (T1 → RapiTime) Traces are exported from T1 to RapiTime
through the ATF common trace format. RapiTime can then perform a WCET analy-
sis using the traces, and generate a detailed WCET report that can be viewed in the
RapiTime report viewer.

H. Activation events (T1 → SymTA/S) Traces containing activation events are ex-
ported from T1 to SymTA/S using the ATF common trace format. SymTA/S can
then perform a schedulability analysis based on this information, and the trace viewer
of SymTA/S can visualize the trace data.

I. Code execution time (T1 → SymTA/S) BCET’s/WCET’s extracted from traces
are exported from T1 to SymTA/S through the XTC 2.0 format. This use case is closely
related to use case H.

J. Analysis data (RapiTime → T1) This use case allows the export of traces from
RapiTime to T1 using the ATF common trace format. T1 users can then reuse the
RapiTime instrumentation.

M. Code execution time (RapiTime → SymTA/S) RapiTime exports WCET es-
timates to SymTA/S, using the XTC 2.0 format. This use case is similar to use case
D.

N. Activation events (RapiTime → SymTA/S) RapiTime provides traces containing
runtime events such as scheduler events, task/thread activation events, etc., using the ATF
common trace format. SymTA/S imports the trace data to show its visual representation.

O. Automated annotation generation (SATIrE → aiT) SATIrE exports function
pointer sets to aiT/TimingExplorer using the AIS annotation format. This reduces the
need for manual annotations.

P. Automated annotation generation (SATIrE → RapiTime) Similarly to use case
O, SATIrE exports function pointer sets to RapiTime using RapiTime’s annotation format
and ASL (abstract source code locations).

Q. Provision of frontend (SATIrE → SWEET) The melmac tool converts Rose’s
internal format (which SATIrE is built upon) into ALF code, which can be analyzed by
SWEET. Through the C frontend that belongs to the Rose framework, this makes SATIrE
act as a C frontend to SWEET enabling SWEET to perform source-level program flow
analysis. Melmac also generates “map files” that relate code locations in the C code
and the corresponding locations in the ALF code: SWEET needs this information when
generating annotations for aiT and RapiTime.

R. Sharing of analysis results (SATIrE ↔ SWEET) The ARAL format has been
designed to exchange program analysis information. API’s have been created that can
be used to read and write analysis results in ARAL. SWEET uses one of these API’s to
generate program flow constraints in ARAL, and SATIrE exports function pointer sets in
this format.
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S. Flow facts (SWEET → aiT) “Flow facts” (program flow constraints) generated by
SWEET are exported to aiT/TimingExplorer in the AIS format. SWEET can generate
a variety of flow facts, ranging from simple loop iteration bounds to elaborate infeasible
path constraints. The provision of these can reduce the need for manual annotations.

T. Flow facts & flow hypotheses (SWEET ↔ RapiTime) Similarly to use case S,
SWEET can also export flow facts to RapiTime in the RapiTime format, using ASL to
specify program locations. An experimental version of SWEET that can read traces from
RapiTime and generate flow facts from these (so-called “flow hypotheses”) has also been
implemented.

8 Interface Formats

In this section we briefly decribe the open interface formats that have been developed
within the project. Specifications for these formats are available at www.all-times.org.

8.1 System-Level Interface Formats

XTC 2.0 XTC stands for “eXtensible Timing Cookies”, and is an XML-based format
used to exchange different kinds of timing analysis data. An earlier version (1.0) was
developed in the FP6 INTEREST project as an interface between SymTA/S and aiT.
This interface has been extended in different ways within ALL-TIMES, and it is now
also supported by T1 and RapiTime. XTC supports a request/reply style of commu-
nication, where different tools successively add information to the cookie. With XTC
1.0, only information about worst-case execution times and maximum stack usage could
be exchanged. The new XTC 2.0 developed since then also includes iteration bounds of
loops, response times, activation patterns aligned with the upcoming AUTOSAR 4.0 and
TIMMO event model descriptions, and scheduling overheads (activation and termination
overhead, context-switch overhead, and context-switch cache penalties). Data are now
annotated with their source (e.g. static analysis, tracing, simulation, or configuration).

ATF This is a common, XML-based trace format that has been developed within ALL-
TIMES. It allows the exchange of trace information, including metadata, among the tools
concerned. It is supported by aiT, SymTA/S, T1, and RapiTime. Similar to XTC, it has
a “cookie” function allowing different tools to add information.

8.2 Code Level Interface Formats

ALF ALF has its origins in the ARTIST2 FP6 Network of Excellence, and stands for
“Artist2 Language for Flow analysis”. It has been further refined, and implemented,
within ALL-TIMES. ALF is a code format, basically a programming language, but it
is not intended to be written by humans. Rather, the idea is to translate programs in
other code formats into it in order to analyze them. ALF is thus designed to be (1)
easy to analyze, and (2) so it can faithfully represent code on different levels, ranging
from source level to binary level. Therefore it includes both high-level constructs, such as
function calls, as well as low-level constructs such as jumps with computed targets. The
new version of SWEET, which is developed within ALL-TIMES, performs a program flow
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analysis of ALF, and SATIrE has been extended to generate ALF code from C sources.
There is also a translator from aiT’s internal representation of binaries into ALF.

ARAL This is a format to exchange program flow analysis information, which has been
developed within ALL-TIMES. It allows to express contexts such as call strings, and it
has a language for expressing analysis results. It is used by SATIrE and SWEET.

ASL ASL stands for “Abstract Source Locations”, and it is a format to express locations
in source code. This information is needed to express source code analysis results. ASL
is now used for this purpose in RapiTime’s annotation format, and both SWEET and
SATIrE export annotations in this format using ASL.

9 Validation

The two principal project objectives have been:

• O1: Integration of timing analysis tools, and

• O2: Increase of productivity of embedded systems development projects by 25% of
the design time pertaining to timing issues.

These objectives can be refined into seven more technical project goals, which contribute
to the project objectives according to the following table:

Goal Description O1 O2
g1 Enable source-code/binary code analysis integration High -
g2 Reduce number of manual annotations - High
g3 Minimise interference by instrumentation - High
g4 Open tool integration High -
g5 Improve accuracy of system-level timing verification Low High
g6 Enable timing estimation early in the design Low High
g7 Demonstrate results in industrial context Low High

The validation in ALL-TIMES has been carried out using two case studies involving
real code for automotive systems: AFS (Active Front Steering) from BMW, and VECU
(VEhicle Control Unit for fuel cell) from Daimler. The validation was done using two
typical scenarios for using the tool chains developed within ALL-TIMES: an early stage
design space exploration scenario, and a late stage verification scenario. The toolflows
used are shown in Figures 6, and 7.

Originally, the intention was to use the VECU case study code to validate the early
stage tool chain, and the AFS code for the late stage chain. However, it turned out that
the source code for AFS, for NDA reasons, was stripped of most of its interesting con-
tents. This made it unsuitable for validating the source-level analyses (SWEET, SATIrE,
and associated use cases). It was therefore decided to validate also the late stage chain
using VECU. In addition, some tool connections not involving source-level analysis were
validated using AFS.

Validation w.r.t. O1 has been done on a per use-case basis, where a use case has been
considered validated if used in any of the early/late stage scenarios. All the finally imple-
mented use cases have been validated in this way except use case C (binary reader), use
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Figure 6: Tool chain for early stage development.
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Figure 7: Tool chain for late stage development.

16



ALL-TIMES D4.4.2 Report on main project results

Workflow Before After
Set up system model 103.5 min 2 min
Set up aiT configuration for current hardware 72 min 8 min
Provide annotations for loop bounds and function pointers 3164 min 191.5 min
Alter aiT configuration to new hardware 5 min 5 min
Perform WCET analysis by aiT 48 min 48 min
Pass WCETs to SymTA/S 16 min 1 min 20 s
Scheduling analysis by SymTA/S 5 min 5 min
TOTAL 56.80 h 4.34 h

Table 1: Early stage design scenario

Workflow Before After
Find function pointers and select loops for instrumentation 3 h 0.5 h
Instrument and analyze for WCETs 3 h 3 h
Check for WCET pessimism 4 h 2 h
Check for WCET optimism 4 h 2 h
Regenerate RapiTime reports 0.5 h 0 h
Build system model 1.5 h 0.26 h
Scheduling analysis by SymTA/S 0.08 h 0.08 h
TOTAL 16.08 h 8.84 h

Table 2: Late stage design scenario

case O (automated annotation generation), and use case R (sharing of analysis results).
Use cases C, and R did not fit well into the tool chain scenarios, and in the end none of
them turned out to be essential for achieving the goals of the project. Use case O was not
O1 validated mainly due to lack of time, but it is very similar to use case P and results
can be expected to be very similar as well.

Validation w.r.t. O2 has been done in the following way. For each use case, its produc-
tivity increase has been estimated from the estimated times to effectuate the tool coupling,
with and without the added support. The total productivity increase was then estimated
from the early and late design scenarios mentioned above, involving the use cases. For
each scenario a typical workflow was set up, and for each step in the workflow the required
time without and with the ALL-TIMES technologies (before/after) was estimated. See
Tables 1 and 2.

By summing the estimated times for the individual steps, an estimate for the total
workflow was obtained. In this way, the improvements in time for performing a timing
analysis could be estimated for each scenario by comparing the times needed before and
after ALL-TIMES. The results indicate a tenfold speedup for the early design scenario,
and a speedup by a factor of two for the late verification scenario. The estimates obtained
have been complemented by interviews with experts at Daimler and BMW, which mainly
confirm that our estimates are realistic.
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In both scenarios, the main improvements come from the more automatic derivation
of program flow constraints enabled by the tool couplings. In the early design space
exploration scenario, the program flow constraints are derived by tracing. It has been
assumed that test vectors provide enough coverage to yield a sufficient confidence in
the results. The late stage verification scenario uses source-level analysis for the same
purpose. Here, is is assumed that source code is available for all the significant parts of
the system. For both scenarios we have assumed that, at the start of the work-flow all
the tools have been installed and appropriately integrated ready for any project but with
no prior knowledge of the project in question.

The design scenarios cover the design activities that pertain to timing analysis. Also
other design activities, like re-coding time-critical parts of the code that constitute bottle-
necks, may be devoted to timing issues. However, the large improvements for the design
scenarios provide strong evidence that the goal of a 25% productivity improvement of
design time pertaining to timing issues is met.

Has the project reached its more detailed goals g1–g7? Yes, we consider them achieved,
for the following reasons:

g1 Enable source-code/binary code analysis integration: achieved, through the source-
level analyses and their connections to timing analysis tools (use cases O, P, Q, R,
S, T). Use cases O and R were not validated: however, use case O is very similar to
use case P, and use case R was not strictly necessary to use in order to validate the
source-level analyses. We thus consider the integration achieved.

g2 Reduce number of manual annotations: achieved, through the source-level, and trace-
based program flow analyses (use cases above, and use cases A, E). In particular,
the trace-based analyses turned out to be efficient for this purpose in the validation.

g3 Minimise interference by instrumentation: achieved. The source-level analysis tools
can find program parts with static program flow, like loops that always iterate the
same number of times, which are likely not to require instrumentation (use cases
P, T). Also the new version of T1 allows on-line instrumentation, a side-product
of use cases A and E so that it is no longer necessary to modify C code when,
e.g., measuring the execution times of functions. These techniques are particularly
valuable when there is no or limited hardware support for tracing, which means
that the instrumentation points must be sparse to avoid large probe effects and
overflowing buffers.

g4 Open tool integration: achieved, through the various open interfaces developed in the
project (XTC 2.0, ATF, ALF, ASL, ARAL). In particular XTC and ATF enable a
large number of tool integrations, both on system- and code level. Furthermore, the
existing open annotation formats for aiT and RapiTime have been used to interface
the source-code analyses performed by SWEET and SATIrE with these tools.

g5 Improve accuracy of system-level timing verification: achieved, through the combina-
tion of measurement-based and static timing analysis techniques. The measurement-
based techniques are often optimistic (missing corner-cases), while the analysis tech-
niques are often pessimistic (conservative algorithms). The combination allows to

• reduce analysis pessimism by measuring where analysis lacks the data to find
accurate bounds.
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• increase the confidence in measurement by verifying key data with static anal-
ysis.

Additionally, interrupt- and task- switching costs as well as measurement overhead
are now considered – this improves the accuracy of system-level timing considerably
especially in more complex systems.

g6 Enable timing estimation early in the design: achieved, through the tool Timing-
Explorer and the source-level analyses. TimingExplorer allows fast design space
exploration of different hardware alternatives, and the source-level analyses can be
done already in early design stages.

g7 Demonstrate results in industrial context : achieved, through the validation using the
industrial case studies. VECU was used as the main case study, and some use cases
were additionally validated using AFS. As mentioned above not all use cases were
validated: 3 out of 16 were not. However, we consider the 13 validated use cases,
and the scenario validation w.r.t. O2, to be fully sufficient to demonstrate all the
important results of ALL-TIMES.

We can thus conclude that the project has fully reached its objectives, as well as the
seven detailed goals.

10 Conclusions

Overall the calculated and estimated productivity increases, as well as the expert feedback,
show that the project goals have been achieved, and that the project results have the
potential to substantially improve the timing analysis process for time-critical software.

One particular success is the trace-based analyses of program flow properties, like loop
bounds and function pointers, since they allow a high degree of automation for code-
analysis. This is manifested in very high speed-ups for the corresponding use cases. A
conclusion is that these techniques are a good choice if the precision obtained by this flow
information is sufficient, and if unsafe estimates can be tolerated.

A second success is the high speed-ups resulting from the automation of information
exchange through the XTC and ATF formats. This is also a very clear improvement,
enabling a much faster interaction between code- and system-level analysis tools. In
addition, this exchange of information enables new opportunities to visualise different
kinds of timing information. This further enhances the productivity of the engineer.

A third success is the automation of system modelling and collection of timing data, and
the resulting speedup, in particular for roundtrip-engineering between the code- and the
system-level. At the same time the now possible choice of code-level techniques, including
mixing different techniques, provides system designers with an unprecedented tool-box,
that is easily adapted to specific needs (required level of confidence, design phase ...).

The source-level analysis shows less impressive numbers. One reason is that the source-
level tools both are academic prototypes, whereas the other prototype tools are derived
from commercial industrial-strength tools. A second reason is the fact, that some files
containing analysis-critical code could not be parsed, since they were available as object
code only.

However, the results also clearly show that source-level analysis improves the quality
of timing analysis whenever it is applicable. One reason is the increased confidence in
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the analysis results, especially compared with trace-based analysis. For safety-critical
systems safe timing estimates may be needed, and then static analysis may be the only
option. Another situation is early analysis before binaries are available: then, trace-based
methods are not applicable. However, the methods have to be applied at the place in
the value chain where source code is available. In particular, automotive suppliers should
thus learn to use source-level techniques.

In conclusion, we believe that ALL-TIMES provides sufficient motivation for the auto-
motive industry to pursue timing analysis much more regularly and systematically in the
future. OEMs should be motivating their suppliers to use the available techniques for all
code that is in their responsibility. In particular the ALL-TIMES industrial partners will
be disseminating this message full scale.
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