
XTC

Language Specification

Version 2.0

Release: Version 2.0

Date: April 28, 2010

Status: Release

Reference: xtc-specification

Copyright notice:

c© Interest Project Consortium

c© Interested Project Consortium

c© ALL-TIMES Project Consortium

Abstract

This specification defines the XML Timing Cookie (XTC) Language, the interchange for-
mat used initially in the Interest project and now updated in the Interested project. This speci-
fication defines XTC 2.0.

XTC 2.0 is an XML application conforming to the Extensible Markup Language (XML)
1.0 (Fourth Edition).

Contents

1 What is XTC? 2

1.1 Abstract Model of the Real World . 2

2 Normative Definition of XTC 2.0 3

2.1 Common Section . 3

2.1.1 General Section . 3

2.1.2 CPU Section . 3

2.1.3 Request / Response Section . 4

2.2 Cookie Section . 7

3 Example XTC Requests 8

3.1 UCB Analysis via XTC . 8

3.2 Determination of Unknown Loop Bounds . 9

3.3 Resolving of Unresolved Computed Calls . 10

3.4 Several Stack and WCET Analysis . 12

4 Options used by aiT and a3 13

1

1 What is XTC?

The XML Timing Cookie (XTC) language is an XML application conforming to the Extensible
Markup Language 1.0 (Fourth Edition). It is an interchange format used for the first time in the
Interest project to transport information, analysis requests, and results between the applications for
generating our analyzing different parts of embedded software.

An XTC document is made up of two parts: a common section and a cookie section. The common
section has a specified format (see Section 2.1). It contains information on the project to analyze,
information needed for the requested analyses, and the analysis requests as well as analysis results.
The cookie section (as presented in Section 2.2) is a storage where a tool can place tool-specific
data that might be useful for restarting an analysis.

1.1 Abstract Model of the Real World

This section describes how real-life projects are modeled in XTC along with the terms that are
used.

A system consists of several computation nodes that perform actual tasks. These nodes are called
CPUs. A CPU is described mainly by its type (architecture), its computation speed, and the pro-
gram it executes 1.

Each CPU usually executes several tasks that run concurrently. A task itself typically consists of a
sequence of processes or runnables (AUTOSAR notation). Runnables or processes themselves typ-
ically consist of one or multiple functions. Thus, the entry point of a runnable usually corresponds
to a known function name, but may also be the address of an arbitrary instruction.

A user can set up his system with different granularity, and may describe it with different level
of detail. Therefore we provide the usage of an executable that must be typed with a type tag of
function, runnable, or task.

Tasks can be invoked in different execution contexts with different timing behavior. For instance,
it may happen that a task only initializes some local variables when it is called for the first time, but
performs some real work in subsequent calls resulting in higher running times. Thus, knowledge
of the current execution context can considerably improve the precision of worst-case execution
time analysis. Therefore we introduce a field to record the mode a runnable is executed in.

Given CPU, executable and mode elements, we can form an analysis request. This may be, e. g.,
a request for worst-case execution time analysis or stack analysis. The tool that reads an XTC file
and performs a requested analysis creates a response when it has terminated successfully.

1There are surely more characteristics that define an actual CPU but these details are tool-specific and not relevant
at this abstraction level.

2

2 Normative Definition of XTC 2.0

Each XTC document consists of a mandatory common section and optional cookie sections that
are contained in the global xtc element.

The common section contains analysis requests and information that is needed to process them.
The cookie sections are a means to store additional information, e. g., information gathered during
an analysis that is useful for later reuse. Cookies are linked to an owner application.

2.1 Common Section

The common section contains an optional general section and at least one CPU section. It has no
attributes.

2.1.1 General Section

The general section can be used to assign an id to the whole XTC file. This is done by setting an
attribute id.

An optional description section can be used to describe the project or settings the analysis requests
are aimed at. It has no attributes and contains simple text that is intended to be displayed to the
user by a tool that processes the XTC file.

2.1.2 CPU Section

A CPU section describes the hardware a code snippet is executed on. Its id attribute has to contain
a unique identifier. A name attribute can be used to give the user a hint what architecture is used.
The file attribute can contain the absolute path to the executable containing the code snippet to be
analyzed.

The attributes speed and unit can be used to specify the clock rate of the CPU. The speed is a float
value. Valid values for unit are MHz, kHz, and Hz. The unit attribute is optional. If it is missing,
Hz is assumed.

A CPU section has to contain at least one executable section. This section and the required at-
tribute type identify what is executed on the CPU. Possible values for this attribute are:

task: A task is an execution path through address space which is controlled by the operating sys-
tem. It may consist of several runnables or processes, where these runnables are sequentially
executed.

runnable: A runnable or process is a collection of functions, where these functions are sequen-
tially executed.

function: A function is the smallest unit for an execution path through address space. It usually
corresponds to functions used in program languages.

3

An additional attribute name exists whose value can be displayed to the user to decide where a
requested analysis has to be started. the assembly name of the function starting the task is known
to the application creating the request, it can be passed by the start attribute. Note that this attribute
value has to be a symbol contained in the executable and references thereby a start address in the
executable. Each executable section must have a unique identifier present in its id attribute.

To distinguish between different execution contexts, an executable section has to contain at least
one mode section. Each mode section must have a unique identifier present in its id attribute. A
description of the execution context can be put in the name attribute, so that the user can decide
which settings are correct for the analysis.

The mode section has to contain at least one request element. There may be optional response
elements matching the request elements. A cookie passed from a tool requesting analyses to a tool
performing analyses usually does not contain response elements. A cookie passing in the opposite
direction after successful analysis will contain response sections containing the analysis results.

2.1.3 Request / Response Section

A request section contains an analysis request. The type of the analysis requested is specified by
the type attribute. Possible values are:

WCET: Perform a worst-case execution time analysis

BCET: Perform a best-case execution time analysis

BCET-WCET: Perform both a best-case and worst-case execution time analysis

Stack: Perform a stack height analysis

LoopTrace: Perform a loop iteration range analysis

CallTrace: Perform a computed call target analysis

WCRT: Perform a worst-case response time analysis

BCRT: Perform a best-case response time analysis

BCRT-WCRT: Perform both a best-case and worst-case response time analysis

Activation: Provide information about the activation model of an executable

OS-Overhead: Provide information about scheduling overhead of an executable, like activate or
terminate task

In fact, the types of the requests in a mode section must be pairwise different.

The mode attribute tells the analyzer how a request is to be handled. The following list shows valid
values along with a description:

4

configuration
Start the analyzer so an expert user may configure settings on the hardware, etc. In this mode
no response is generated but cookies are updated.

interactive
The analyzer is started in a way allowing the user to control and manipulate common analysis
settings, e. g., the entry point.

batch
Try to start the analyzer in batch mode, i. e. running in the background with no need for
additional user interaction. This is only possible if all information required for the analysis
is present.

If no mode attribute is given, interactive mode is used.

A request section may contain option elements to pass tool-specific information. Each option has
a name and a value attribute. The contents of these attributes are tool-specific (see Section 3 for
examples).

For each request element, there may be a corresponding response section. The association of
response sections to request sections is done via the type. This is possible since the types of the
requests in a mode section must be pairwise different.

• A response section of type WCET contains a single WCET element. A WCET element has
two attributes:

– The value attribute contains a float number denoting the time spent on the worst-case
path.

– The unit attribute may be set to us (microseconds), ms (milliseconds), s (seconds), or
cycles (CPU cycles). Default is cycles.

A WCET element may additionally contain an UCB element. This element is available
if a UCB analysis has been requested initially (see Section 4). An UCB element has four
attributes:

– The maxNumber contains the maximum number of useful cache blocks (UCBs).

– The blockPenalty attribute contains a float number denoting the eviction costs of a
single UCB.

– The totalPenalty attribute contains a float number denoting the eviction costs of the
maximum number of UCBs.

– The unit attribute may be set to us (microseconds), ms (milliseconds), s (seconds), or
cycles (CPU cycles). Default is cycles.

• A response section of type BCET contains a single BCET element. A BCET element has
two attributes:

– The value attribute contains a float number denoting the time spent on the worst-case
path.

5

– The unit attribute may be set to us (microseconds), ms (milliseconds), s (seconds), or
cycles (CPU cycles). Default is cycles.

• A response section of type Stack may contain one or two stack-usage elements, depending
on the number of stacks in the target architecture (some targets distinguish between a system
stack and a user stack). A stack-usage element has four attributes:

– The type attribute indicates the type of the stack. It may be System or User.

– The attributes min and max contain the lower end and the upper end of the result interval
computed by stack analysis. Their values may be integers or the special values BOT
and TOP.

– The unit attribute may hold an integer between 1 and 127. It represents the size of the
unit used for min and max, measured in bytes. For instance, if max is 10 and unit is 4,
this means that the maximum stack usage is 10 units of 4 bytes each, i. e. 40 bytes. The
default value for unit is 1, which means that max is the maximum stack usage measured
in bytes.

• A response section of type LoopTrace contains for each loop a LoopTrace element that has
four attributes:

– The min attribute indicates the minimum loop iteration count.

– The max attribute indicates the maximum loop iteration count.

– The start_address attribute to identify an instruction before the loop.

– The count_address attribute to identify the body of the loop.

• A response section of type CallTrace contains for requested computed call a CallTrace ele-
ment that may contain an arbitrary number of target elements. Both the CallTrace and the
target element feature a single address attribute. For the CallTrace the address denotes the
addresses of the program point where the computed call resides. The address attribute of the
target element indicates the target address of the corresponding computed call.

• A response section of type Activation may contain any event model type (StandardEvent-
modelType, PatternEventmodelType or InterruptEventmodelType).

– StandardEventModel consists of the three values period, jitter and mindist. An addi-
tional field indicates to indicate that this event is sporadic.

– The PatternEventModel has similar attributes as the StandardEventModel. It addition-
ally has the possibility to describe an event sequence. While defining the Standard-
EventModel it was implicit that an event would always occur at the beginning of the
period. While defining a PatternEventModel each such activation has to be specified.

– The InterruptEventModel defines a sequence of eventPairs. Each pair defines the mini-
mum and maximum distance between events. The first pair in the sequence defines the
distances between two events. The second pair in the sequence defines the distances
between three events, and so forth.

• The OsOverheadTypeContent provides information regarding the overhead induced to the
selected element by the OS scheduling. These overheads are detailed below.

6

– The activation overhead is the time required by the OS to schedule the activation of the
element.

– The termination overhead is the time required by the OS to clear up after the element
has finished execution.

– The contextSwitch overhead is the time it takes for the OS to preempt the selected
element and switch the execution to another task or ISR.

– The contextSwitchCachePenalty is the largest execution time effect on the element if its
cache is destroyed, at any point, during execution. This value is used during schedul-
ing analysis to compensate the undisturbed execution assumption during static WCET
analysis.

2.2 Cookie Section

Each cookie section is owned by a single tool. Its name has to be specified in the owner attribute.
Currently used values are:

aiT: AbsInt’s worst-case execution time analyzer (includes stack analysis)

a3: AbsInt’s Advanced Analyzer a3 (includes WCET and stack analysis)

RT-Druid: Evidence’s configuration and schedulability analysis tool

SymTA/S: Symtavision’s SymTA/S tool suite

Each tool can only have one cookie section.

The organization of a cookie section is defined by the owner application. The XTC specification
only requires a unique namespace.

7

3 Example XTC Requests

3.1 UCB Analysis via XTC

Example demonstrating how to trigger the UCB analysis via XTC:

• Input XTC cookie enabling the UCB analysis:

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="120.0" unit="MHz" id="ID_0" name="mpc5554" file="edn.elf">
<executable type="runnable" id="ID_1" name="edn" start="main">

<mode id="ID_2">
<description>EDN</description>
<request mode="interactive" vendor="SymTA/S" type="WCET">

<option value="mpc55xx" name="a3:cpu"/>
<option value="edn.ais" name="a3:global_ais_file"/>
<option value="edn.msf" name="a3:machine_settings_file"/>
<option value="true" name="a3:ucb_analysis"/>
<option value="3" name="a3:ucb_penalty"/>

</request>
</mode>

</executable>
</CPU>

</common>
</xtc>

• Final XTC cookie with UCB analysis results:

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="120.0" unit="MHz" id="ID_0" name="mpc5554" file="edn.elf">
<executable type="runnable" id="ID_1" name="edn" start="main">

<mode id="ID_2">
<description>EDN</description>
<request mode="interactive" vendor="SymTA/S" type="WCET">

<option value="mpc55xx" name="a3:cpu"/>
<option value="edn.ais" name="a3:global_ais_file"/>
<option value="edn.msf" name="a3:machine_settings_file"/>
<option value="true" name="a3:ucb_analysis"/>
<option value="3" name="a3:ucb_penalty"/>

</request>
<response vendor="a3" type="WCET">

<WCET unit="us" value="856.733333">
<UCB totalPenalty="0.250000"

unit="us"
blockPenalty="0.025000"
maxNumber="10"/>

</WCET>
</response>

</mode>
</executable>

</CPU>
</common>

</xtc>

8

3.2 Determination of Unknown Loop Bounds

Tool interaction between SymTA/S, T1 and a3 (unknown loop bounds):

• Input XTC cookie from SymTA/S to compute the WCET of some entry point:

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="56" unit="MHz" id="ID_0" name="ECU" file="../temp.elf">
<executable type="runnable" id="ID_1" name="Main" start="MAIN_LOOP">

<mode id="ID_2">
<description>Main loop.</description>
<request mode="interactive" vendor="SymTA/S" type="WCET">

<option value="../hardware.msf"
name="a3:machine_settings_file"/>

</request>
</mode>

</executable>
</CPU>

</common>
</xtc>

• Intermediate XTC cookie featuring a LoopTrace request (only modified parts are shown):

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
...

<mode id="ID_2">
...
<request vendor="a3" type="LoopTrace" source="analysis">

<option value="0x43691c" name="T1:start_addresses"/>
<option value="0x436920" name="T1:count_addresses"/>
<option value="0x436930" name="T1:end_addresses"/>

</request>
...

• Response from T1 featuring measured loop bounds (only modified parts are shown):

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
...

<mode id="ID_2">
...
<response type="LoopTrace" vendor="T1">

<LoopTrace start_address="0x0043691c"
count_address="0x00436920"
min="80"
max="100"/>

</response>
...

9

• Final XTC cookie featuring WCET analysis results

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="56" unit="MHz" id="ID_0" name="ECU" file="../temp.elf">
<executable type="runnable" id="ID_1" name="Main" start="MAIN_LOOP">

<mode id="ID_2">
<description>Main loop.</description>
<request mode="interactive" vendor="SymTA/S" type="WCET">

<option value="../hardware.msf"
name="a3:machine_settings_file"/>

</request>
<request vendor="a3" type="LoopTrace" source="analysis">

<option value="0x43691c" name="T1:start_addresses"/>
<option value="0x436920" name="T1:count_addresses"/>
<option value="0x436930" name="T1:end_addresses"/>

</request>
<response type="LoopTrace" vendor="T1">

<LoopTrace start_address="0x0043691c"
count_address="0x00436920"
min="80"
max="100"/>

</response>
<response vendor="a3" type="WCET">

<WCET unit="us" value="20.732143"/>
</response>

</mode>
</executable>

</CPU>
</common>

</xtc>

3.3 Resolving of Unresolved Computed Calls

Tool interaction between SymTA/S, T1 and a3 (unresolved computed calls):

• Input XTC cookie from SymTA/S to compute the WCET of some entry point:

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="56" unit="MHz" id="ID_0" name="ECU" file="../temp.elf">
<executable type="runnable" id="ID_1" name="Main" start="MAIN_LOOP">

<mode id="ID_2">
<description>Main loop.</description>
<request mode="interactive" vendor="SymTA/S" type="WCET">

<option value="../hardware.msf"
name="a3:machine_settings_file"/>

</request>
</mode>

</executable>
</CPU>

</common>
</xtc>

10

• Intermediate XTC cookie featuring a CallTrace request (only modified parts are shown):

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
...

<mode id="ID_2">
...
<request vendor="a3" type="CallTrace">

<option value="0x41b5f4,0x41ba04" name="T1:call_addresses"/>
</request>
...

• Response from T1 featuring measured computed call targets (only modified parts are shown):

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
...

<mode id="ID_2">
...
<response type="CallTrace" vendor="T1">

<CallTrace address="0x0041B5F4">
<target address="0x0042D2CC"/>

</CallTrace>
<CallTrace address="0x0041BA04"/>

</response>
...

• Final XTC cookie featuring WCET analysis results

<xtc version="2.0" schemaLocation="http://www.absint.com/xtc xtc.xsd">
<common>

<CPU speed="56" unit="MHz" id="ID_0" name="ECU" file="../temp.elf">
<executable type="runnable" id="ID_1" name="Main" start="MAIN_LOOP">

<mode id="ID_2">
<description>Main loop.</description>
<request mode="interactive" vendor="SymTA/S" type="WCET">

<option value="../hardware.msf"
name="a3:machine_settings_file"/>

</request>
<request vendor="a3" type="CallTrace">

<option value="0x41b5f4,0x41ba04" name="T1:call_addresses"/>
</request>
<response type="CallTrace" vendor="T1">

<CallTrace address="0x0041B5F4">
<target address="0x0042D2CC"/>

</CallTrace>
<CallTrace address="0x0041BA04"/>

</response>
<response vendor="a3" type="WCET">

<WCET unit="us" value="16.643"/>
</response>

</mode>
</executable>

</CPU>
</common>

</xtc>

11

3.4 Several Stack and WCET Analysis

Complex XTC request file featuring several WCET-analysis and Stack-analysis requests:

<xtc
xmlns:a3="http://www.all-times.org/xtc/a3"
xmlns:SymTA-S="http://www.all-times.org/xtc/SymTA-S"
xmlns:RTDruid="http://www.all-times.org/xtc/RTDruid"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<common>
<general id="id1">

<description>Description of the project</description>
</general>
<CPU id="id2" name="Motorola PowerPC 565">

<executable type="runnable" id="id3" name="Main entry" start="_main">
<mode id="id4">

<description>Specify mode for the given entry point</description>
<request type="WCET" mode="interactive">
<option name="a3:cpu" value="mpc565"/>
<option name="a3:build" value="55383"/>
<option name="a3:global_ais_file" value="common.ais"/>
<option name="a3:ais_file" value="main.ais"/>
<option name="a3:gdl_file" value="graph.gdl"/>
<option name="a3:xml_report_file" value="report-wcet.xml"/>
<option name="a3:xml_result_file" value="result.xml"/>
<option name="a3:stack_address" value="0x3ffff8"/>

</request>
<request type="Stack" mode="interactive">

<option name="a3:cpu" value="mpc565"/>
<option name="a3:build" value="55383"/>
<option name="a3:ais_file" value="test.ais"/>
<option name="a3:xml_report_file" value="report-stack.xml"/>
<option name="a3:stack_address" value="0x3ffff8"/>

</request>
</mode>

</executable>
<executable type="runnable" id="id5" name="Computation" start="_compute">

<mode id="id6">
<description>Specify mode for the given entry point</description>
<request type="WCET" mode="interactive">

<option name="a3:cpu" value="mpc565"/>
<option name="a3:build" value="55383"/>
<option name="a3:ais_file" value="compute.ais"/>
<option name="a3:xml_report_file" value="report.xml"/>
<option name="a3:stack_address" value="0x3ffff0"/>

</request>
</mode>

</executable>
</CPU>

</common>
</xtc>

12

4 Options used by aiT and a3

The following section lists the name attributes of a request’s option element that are recognized
by aiT and a3, and describes how the value is used for the analysis.

If the value of an option is a relative path or a relative file name then the value is interpreted relative
to the location of the XTC document.

• aiT:cpu, a3:cpu
The name of the CPU so a suitable member of the aiT family can be started.

• aiT:build, a3:build
The build number of aiT to use.

• aiT:global_ais_file, a3:global_ais_file
The name of the AIS file that is used for all analyses.

• aiT:ais_file, a3:ais_file
The name of the AIS file that is used for the analysis in addition to the global AIS file.

• aiT:gdl_file, a3:gdl_file
The name of the file to be used for visualizing the analysis results.

• aiT:report_file, a3:report_file
The name of a plain text report file.

• aiT:xml_report_file, a3:xml_report_file
The name of a XML report file.

• aiT:xml_result_file, a3:xml_result_file
The name of the XML file that contains the analysis results.

• aiT:stack_address, a3:stack_address
The initial value of the stack pointer.

• aiT:scade_xml_file, a3:scade_xml_file
The name of the XML file that is needed to launch aiT if bundled with SCADE.

• aiT:machine_settings_file, a3:machine_settings_file
Instructs aiT to read machine settings from this file if supported by the target.

• aiT:ucb_analysis, a3:ucb_analysis
Instructs aiT to perform a useful cache block (UCB) analysis if supported by the target. This
is only valid for a WCET analysis.

• aiT:ucb_penalty, a3:ucb_penalty
The eviction costs for an useful cache block. If not specified a default of one CPU cycle is
assumed.

13

Appendix: Document History

This appendix describes the revision history of this document. Dates are written in the format
DD-MM-YYYY. A document release is a release version of the document. Document releases
can be identified by the date occurring on the title page. The document history given in the sequel
documents all changes in this document.

28-04-2010 Added CallTrace response and requests.
15-02-2010 Added some more XTC cookie examples.
05-01-2010 Added documentation on how to trigger a UCB analysis.
07-09-2009 Adapted document to XTC version 2.0.
02-02-2009 Added machine settings file option.
30-07-2008 Revised example XTC and updated aiT option description.
23-07-2008 renamed top element to xtc.
30-06-2008 Update of description of response elements.

Other minor improvements.

01-04-2008 Added scade_xml_file option description.
Added global_ais_file option description.

03-03-2008 Added description of mode attribute for a request.
Added appendix containing options recognized by aiT.

12-11-2007 Correction of typos, and a bit more explanations.
Addition of an example (Section 3).

07-10-2007 Minor update: Allow request items to have a start attribute that contains the
name of the function to be analyzed.

16-08-2007 First release.

18-06-2007 Begin of document writing.

14

	Contents
	What is XTC?
	Abstract Model of the Real World

	Normative Definition of XTC 2.0
	Common Section
	General Section
	CPU Section
	Request / Response Section

	Cookie Section

	Example XTC Requests
	UCB Analysis via XTC
	Determination of Unknown Loop Bounds
	Resolving of Unresolved Computed Calls
	Several Stack and WCET Analysis

	Options used by aiT and a3

